Advanced Search
Current and Breaking News for Professionals, Consumers and Media



Click here to learn how to advertise on this site and for ad rates.

Research Author: Staff Editor Last Updated: Feb 14, 2018 - 1:27:10 PM



Atlas of Brain Blood Vessels Provides Fresh Clues to Brain Diseases

By Staff Editor
Feb 14, 2018 - 1:22:22 PM



Email Newsletter icon, E-mail Newsletter icon, Email List icon, E-mail List icon Sign up for our Ezine
For Email Marketing you can trust


Email this article
 Printer friendly page

(HealthNewsDigest.com) - The vasculature of the brain is, like elsewhere on the body, made up of arteries, veins and thin, intervening vessels called capillaries through which the main exchange of oxygen, nutrients and waste products takes place. However, the vessels of the brain differ from others in one important respect – the so-called blood-brain barrier, which acts as a filter that blocks certain substances from passing through the vessel walls, thus protecting the brain from potentially toxic products while letting through whatever it needs for its structure and function.

“It is becoming increasingly clear that a fully functional blood-brain barrier is essential to brain health and that a dysfunctional barrier is a factor of many brain diseases,” says study leader Christer Betsholtz, professor at Uppsala University and Karolinska Institutet. “The structure of the blood-brain barrier hasn’t been fully known, and so a detailed atlas of the brain’s vasculature and its barrier functionality is needed.”

Using a relatively new technique called single cell RNA sequencing, the researchers have produced a cellular and molecular atlas of the mouse brain vasculature. The blood vessels were broken apart in individual cells, which were then, one by one, mapped in accordance with their gene expression patterns and compared. The basic cell type and any gradual specialisations could then be ascertained for each cell. Finally, the molecular map was matched with the corresponding anatomy in tissue analyses using specific markers.

“For the first time we’ve been able to show in detail how the blood-brain barrier differs among the various types of brain blood vessels,” says lead author Michael Vanlandewijck, assistant professor at Uppsala University and Karolinska Institutet and director of the Single Cell Analysis Unit at Karolinska Institutet’s and AstraZeneca’s Integrated Cardio Metabolic Centre (ICMC).

It was long thought that the blood-brain barrier was made up of specialised endothelial cells in the blood vessels; the new study shows, however, that there are probably many other types of cells involved in the maintenance of the blood-brain barrier as well, including cells called pericytes in the capillary walls. The researchers were also able to establish the molecular identity of another cell type in the vascular wall, a kind of connective tissue cell located in a narrow space just outside the brain’s blood vessels.

“This space has been posited to act as the brain’s lymph system, so it’ll now be incredibly interesting to study these cells further using the markers we’ve found,” says Dr Vanlandewijck.

The atlas means that a number of genes with known or presumed function in different brain diseases can now be associated with specific cell types in the brain’s vasculature.

“We already have results indicating that many more cell types than previously thought are involved in neurovascular diseases such as Alzheimer’s and brain tumours,” says Professor Betsholtz. “We’re now able to study this systematically in different diseases with the same type of analyses as we’ve used here.”

The study was conducted by researchers at Uppsala University and Karolinska Institutet and colleagues in France, Finland, Switzerland, Japan and China. It was financed by AstraZeneca, the Swedish Research Council, the European Research Council (ERC), the Leducq Foundation, the Swedish Cancer Society, the Knut and Alice Wallenberg Foundation, the Swedish Brain Fund, the Swiss National Science Foundation and the Synapsis Foundation.

Publication: A molecular atlas of cell types and zonation in the brain vasculature”, Michael Vanlandewijck, Liqun He, Maarja Andaloussi Mäe, Johanna Andrae, Koji Ando, Francesca Del Gaudio, Khayrun Nahar, Thibaud Lebouvier, Bàrbara Laviña, Leonor Gouveia, Ying Sun, Elisabeth Raschperger, Markus Räsänen, Yvette Zarb, Naoki Mochizuki, Annika Keller, Urban Lendahl, Christer Betsholtz. Nature, online 14 February 2018. DOI: 10.1038/nature25739.

###



Top of Page

HealthNewsDigest.com

Research
Latest Headlines


+ Amputees Lending a Hand to Neural Interfacing Research at UT Southwestern
+ Developing Antidotes for Cyanide, Mustard Gas
+ Promising Treatment for Ebola Virus to be Tested at Texas Biomed
+ Stem Cell Study May Result in Stronger Muscles in Old Age
+ Researching Smell, From Someone Who Can’t
+ Simple Walking Test May Help Make Difficult Diagnosis
+ Low Vision Research Shifts Into Overdrive
+ Early Results from Clinical Trials Not All They’re Cracked Up to Be (VIDEO)
+ Clues to Obesity’s Roots Found in Brain’s Quality Control Process
+ Reuniting Long-Lost Loved Ones



Contact Us | Job Listings | Help | Site Map | About Us
Advertising Information | HND Press Release | Submit Information | Disclaimer

Site hosted by Sanchez Productions