Advanced Search
Current and Breaking News for Professionals, Consumers and Media



Click here to learn how to advertise on this site and for ad rates.

Cancer Issues Author: Staff Editor Last Updated: Mar 13, 2014 - 12:05:38 PM



'Velcro Protein' Found to Play Surprising Role in Cell Migration

By Staff Editor
Mar 13, 2014 - 12:00:25 PM



Email Newsletter icon, E-mail Newsletter icon, Email List icon, E-mail List icon Sign up for our Ezine
For Email Marketing you can trust


Email this article
 Printer friendly page

Caption: Normal epithelial cells (red) in this fragment of a mouse mammary duct form branched structures. However, cells that turn on the gene Twist1 (green) detach from neighboring cells and migrate into the surrounding environment. Credit: Eliah Shamir

(HealthNewsDigest.com) - Studying epithelial cells, the cell type that most commonly turns cancerous, Johns Hopkins researchers have identified a protein that causes cells to release from their neighbors and migrate away from healthy mammary, or breast, tissue in mice. They also found that deletion of a cellular "Velcro protein" does not cause the single-celled migration expected. Their results, they say, help clarify the molecular changes required for cancer cells to metastasize.

Because epithelial cells give rise to 85 percent of all cancers, the work may have implications outside of breast cancer. A summary of the results was published online on March 3 in TheJournal of Cell Biology.

Epithelial cells line the inside and outside of organs throughout the body. The team focused their work on mammary epithelial cells, which form the ducts that carry milk within the breast. "Tumor cells have to break their connections to other epithelial cells in order to leave the breast and build metastases in other parts of the body," explains Andrew Ewald, Ph.D.,assistant professor of cell biology and oncology at the Johns Hopkins University School of Medicine.

For their study, Ewald's team removed small pieces of mammary tissue from normal mice and grew them in gels that mimic their natural environment. By using colored proteins to mark different types of cells, they were able to use microscopes to watch how cell behavior varied with the genetics of the cells.

The first protein they studied was E-cadherin, which is found on the surface of most epithelial cells and is used to connect epithelial cells to each other. E-cadherin is like the Velcro that holds epithelial cells together, and its absence is often associated with human breast cancers, says Ewald.

In one experiment, the team deleted the protein from normal mouse mammary cells and watched what happened. Expecting the cells to completely disconnect and move out on their own into the surrounding gel, the researchers were surprised to find that most of the epithelial cells remained connected to each other, although their organization was disrupted. Some of the epithelial cells did penetrate the gel, but usually in single-file "columns" that remained connected to the tissue. A similar result was seen in live mice.

"For tumor cells to metastasize, they have to begin interacting with the proteins outside of the tumor and eventually strike out on their own," says Eliah Shamir, a graduate student in Ewald's lab and lead author on the study. "When we deleted E-cadherin, the epithelial cells began interacting more with proteins in the gel, but they didn't lose contact with the rest of the mammary tissue."

In a second set of experiments, the team turned on a gene called Twist1, which is thought to affect the activity of many genes needed to transform groups of stationary epithelial cells into independent, mobile cells. The result, they say, was dramatic. (See VIDEO) Within 24 hours of turning on Twist1, dozens of individual cells began to move past the epithelial boundary and into the gel beyond. Again, similar results were seen when the experiment was repeated in live mice.

Surprisingly, the researchers say that when they caused epithelial cells lacking E-cadherin to turn on Twist1, the cells were no longer able to escape into the gel as single cells. Instead, they created many "columns" of cells, which didn't detach from the mammary tissue. These results suggest that the single-celled detachment and migration induced by Twist1 actually requires the presence of E-cadherin - the Velcro protein that helps bind the cells together. "This finding is quite counterintuitive," Ewald says, "and we are eager to understand the biology behind it."

Since Twist1 is known to affect the activity of many genes, the researchers have begun to narrow down which of those genes is responsible for the cellular spread they witnessed. With that information, they hope to identify new means of preventing metastasis.

"Our goal is to improve outcomes for patients with metastatic breast cancer, and this work takes us one step closer to doing so," says Ewald.

Other authors of the report include Elisa Pappalardo, Khaled Aziz, Phuoc Tran and Joel Bader of the Johns Hopkins University School of Medicine and Danielle Jorgens, Kester Coutinho, Wen-Ting Tsai and Manfred Auer of the Lawrence Berkeley National Laboratory.

This work was supported by grants from the American Cancer Society (RSG-12-141-01-CSM), the National Cancer Institute (P50CA103175), the National Institute of General Medical Sciences (P01GM051487), the National Center for Research Resources (U54RR020839), the Safeway Foundation for Breast Cancer Research, the Avon Foundation for Women, the Isaac Morris Hay and Lucille Elizabeth Hay Graduate Fellowship Award, the University of California, Berkeley, and the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report.

###

For advertising and promotion on HealthNewsDigest.com, call Mike McCurdy: 877-634-9180 or [email protected] We have over 7,000 journalists as subscribers.

 



Top of Page

HealthNewsDigest.com

Cancer Issues
Latest Headlines


+ Men who are Uneducated About their Prostate Cancer Have Difficulty Making Good Treatment Choices
+ Pinpoint Gene Likely to Promote Childhood Cancers
+ Expressive Writing May Help Breast Cancer Survivors
+ Restoring Intimacy after Prostate Cancer
+ UPMC-Developed Test Increases Odds of Correct Surgery for Thyroid Cancer Patients
+ Aggressive Tumors Silence Genes that Fight Cancer
+ Cancer and Game Theory
+ Pancreatic Surgery Complications Impact Hospital Costs More Than Length of Stay
+ Depressed Men with Prostate Cancer are Diagnosed with Later Stage Disease Don’t Live as Long as Men who are Not Depressed
+ Advances in Treating Children with Cancer: The CWPW Pediatric Solid Tumor Program



Contact Us | Job Listings | Help | Site Map | About Us
Advertising Information | HND Press Release | Submit Information | Disclaimer

Site hosted by Sanchez Productions